Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Asian Pac J Cancer Prev ; 23(9): 3113-3123, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2205791

ABSTRACT

BACKGROUND: This study was carried out to synthesize a new complex of Fe(II) with isoleucine dithiocarbamate ligand and to determine its potential as an anticancer and antiviral agent for SARSCOV-2. METHODS: The synthesized complexes were then characterized by UV-vis and FT-IR spectroscopy and their melting points. The value of the conductivity of the complex compound is also determined. Anti-cancer activity was tested in vitro and molecular docking. Its potential as an antiviral against SARSCOV-2 was also carried out by molecular docking. Pharmacokinetics/ADMET properties were also carried out on the complex. RESULT: Spectral results showed the successful synthesis of Fe(II) isoleucine dithiocarbamate complex. The complex produced UV-vis spectra at 268 and 575 nm, and the IR data at 399-599 cm-1 showed the coordination between the Fe(II) atoms with sulphur, nitrogen and oxygen of the isoleucine dithiocarbamate ligand. Fe(II) isoleucine dithiocarbamate had a cytotoxicity effect on the MCF-7 cell line (IC50 =613 µg/mL). The complex significantly caused morphological changes in the breast cancer cell line, finally leading to cell apoptosis. CONCLUSION: Cytotoxic test of Fe(II) isoleucine dithiocarbamate showed moderate anticancer activity on MCF-7 cancer cells and showed antiviral activity against SARSCOV-2 by interfering with spike glycoprotein -ACE2 receptors, and inhibiting major proteases and 3Clpro.


Subject(s)
Antineoplastic Agents , COVID-19 Drug Treatment , Coordination Complexes , Angiotensin-Converting Enzyme 2 , Antineoplastic Agents/chemistry , Antiviral Agents/pharmacology , Coordination Complexes/pharmacology , Ferrous Compounds , Humans , Isoleucine , Ligands , Molecular Docking Simulation , Nitrogen , Oxygen , Spectroscopy, Fourier Transform Infrared , Sulfur
2.
Gene Rep ; 23: 101169, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1201594

ABSTRACT

BACKGROUND: It is necessary to assess the cellular, molecular, and pathogenetic characteristics of COVID-19 and attention is required to understand highly effective gene targets and mechanisms. In this study, we suggest understandings into the fundamental pathogenesis of COVID-19 through gene expression analyses using the microarray data set GSE156445 publicly reachable at NIH/NCBI Gene Expression Omnibus database. The data set consists of MCF7 which is a human breast cancer cell line with estrogen, progesterone and glucocorticoid receptors. The cell lines treated with different quantities of Cissampelos pareira (Cipa). Cipa is a traditional medicinal plant which would possess an antiviral potency in preventing viral diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: Utilizing Biobase, GEOquery, gplots packages in R studio, the differentially expressed genes (DEGs) were identified. The gene ontology (GO) of pathway enrichments employed by utilizing DAVID and KEGG enrichment analyses were studied. We further constructed a human protein-protein interaction (PPI) network and performed, based upon that, a subnetwork module analysis for significant signaling pathways. RESULTS: The study identified 418 differentially expressed genes (DEGs) using bioinformatics tools. The gene ontology of pathway enrichments employed by GO and KEGG enrichment analyses of down-regulated and up-regulated DEGs were studied. Gene expression analysis utilizing gene ontology and KEGG results uncovered biological and signaling pathways such as "cell adhesion molecules", "plasma membrane adhesion molecules", "synapse assembly", and "Interleukin-3-mediated signaling" which are mostly linked to COVID-19. Our results provide in silico evidence for candidate genes which are vital for the inhibition, adhesion, and encoding cytokine protein including LYN, IGFBP5, IL-1R1, and IL-13RA1 that may have strong biomarker potential for infectious diseases such as COVID-19 related therapy targets.

SELECTION OF CITATIONS
SEARCH DETAIL